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ABSTRACT: Controlled assembly of nanoscale building blocks is
a promising approach to obtain functional materials with unique
properties. Here, we report a way to manipulate the supra-
molecular structures of giant molecules based on discotic triangle
cores and isobutyl polyhedral oligomeric silsesquioxanes (BPOSS)
nanoparticles (NPs). It is found that depending upon the number
of BPOSS at the periphery of the discotic cores, the packing of
these nanoscale components (discotic core and POSS) could be
manipulated into either cylindrical or Frank−Kasper (F−K) A15
(Pm3̅n) phases. The formation of these supramolecular nanostructures is mandated by the balance between the stacking of the
discotic cores and the steric hindrance effect of the BPOSS NPs. This strategy to manipulate the packing of nanoscale building
blocks for different supramolecular nanostructures including the fabrication of cylindrical structures and A15 (Pm3̅n) phases may be
extended to other nanoscale building blocks for future development of materials with complex structures as well as tailored
functionalities and properties.
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1. INTRODUCTION

Achieving materials with desired properties and functionalities
via reverse thinking and designing has been demonstrated as
one of the most promising ways in self-assembly (“bottom-
up”) approaches. In the past two decades, different function-
alized nanoscale building blocks have been used to achieve
various interesting nanostructures and properties in soft
matters.1−5 Specifically, Frank−Kasper (F−K) phases, which
originally appeared in metal-alloys with specifically required
spherical motifs,6,7 are receiving researchers’ attention since
they have been observed in soft materials, such as supra-
molecular dendrimers,8−12 self-organizable dendronized poly-
mers,13−16 block copolymers,17−19 surfactants,20−23 and giant
molecules.24−26 For example, in 1997, the first thermotropic
A15 (Pm3̅n) phase in soft matter was discovered in dendrimers
by Percec et al.27 Since then, a number of dendrimers were
found to assemble into the A15 (Pm3̅n) phase,27−32 σ (P42/
mnm) phase,33 and quasicrystal phase34,35 together with the
traditional phases, providing a “nanoperiodic table” of
supramolecular structures.10,12,36 Bates et al. discovered the
F−K σ (P42/mnm) phase, C14 (P63/mmc) phase, and C15
(Fd3̅) phase in sphere-forming block copolymer melts.17−19

Mahanthappa et al. found F−K phases formation in surfactant
micelles.20−23 In the meantime, some simulation and
theoretical works about F−K phases have been carried
out.37−46 For example, Kamien et al. investigated the theory
of F−K phase formation using a packing model of a hard core

and soft corona system.41,42 Goddard et al. conducted
molecular dynamic simulation of supramolecular dendrimer
balls on forming A15 (Pm3̅n) structures.37 Glotzer et al.
studied the simulation on self-assembly of soft matter,
including conventional structures as well as quasicrystals and
their approximants.38−40

According to those simulations, the building block units
must possess specific topological restrictions and secondary
interactions. The building blocks in the previously reported
examples are mostly soft. Recently, the F−K phases have also
been discovered in several categories of giant molecules.24−26

Giant molecules are a kind of nanoscale macromolecules
constructed by the precise molecular nanoparticles (MNPs) as
composition units, such as POSS, fullerenes, polyoxometalates,
etc.47−49 The term “giant” is referring to comparison with their
small molecular counterparts as the MNP units resemble
atoms but are thousands of times larger. Similar concept, such
as the nanoelements, have also been used.12,36 Due to the
shape and volume-persistence of the MNPs, the principles of
the self-assembly of giant molecules are different from those of
the dendrimers or the block copolymers. By rationally
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molecular design, various supramolecular nanostructures have
been achieved,48,50,51 which are largely influenced by the
packing constraints of each individual shape as well as
competing interactions.47 Controlling the packing schemes of
these building blocks in a specific combination of composition
and topology via a “molecular Lego” approach could result in
materials with different structures and properties.52−54

Herein, we propose a strategy to manipulate the packing of
nanoscale building blocks via specially designed discotic giant
molecules to achieve unconventional supramolecular struc-
tures. As a proof-of-concept study, two discotic cores were
selected to construct the giant molecules: 1,3,5-triethynylben-
zene (TEB, simplified as green triangle in Figure 1) and 1,3,5-
tritriazole benzene (TAB, orange triangles in the cartoons in
Figure 1). Connected with flexible chains, both discotic cores
are able to form columnar liquid crystal phases with π−π
stacking distances of 0.3−0.4 nm along the column direction.
Those cylindrical assemblies have been widely applied into
optoelectronic devices and field effect transistors.55−57 In this
article, three or six relatively rigid and bulky isobutyl POSS
(BPOSS) nanoparticles (NPs) (red spheres in the cartoons in
Figure 1) are introduced into the periphery of these discotic
cores. Since the diameter of BPOSS (1.1−1.2 nm) is much
larger than the π−π stacking distance of the cores (0.3−0.4
nm), therefore, we can directly tune the balance between the
steric hindrance of the BPOSS NPs and π−π interactions of
the discotic cores by introducing a different number of rigid
BPOSS NPs to the periphery of the discotic cores. When the
number of BPOSS is three, the cores may be still able to form
columns by rotating the BPOSS NPs around the column.
However, when we increase the number of BPOSS to six, the

steric hindrance of the BPOSS NPs at periphery could break
the columns down, which may deform into spherical motifs
and further self-assemble into spherical supramolecular
structures (Figure S1).
Different from our previous works, in which the spherical

motifs are formed by aggregation of molecules with cone-shape
confirmation whose driving force is the immiscibility between
hydrophobic and hydrophilic moieties of the giant molecules,24

in this system, the spherical motifs are formed through
breaking down the columns, and the driving forces are the
cooperative π−π interactions and hydrogen bonding compet-
ing with the steric hindrance effect. Similar transitions from
columnar to spherical phases have been previously observed in
dendrimers, which are soft and featured by their generation
numbers, molecular tape angle, and solid angle.29,31,58 Different
from the dendrimers, due to the rigidity of the BPOSS NPs,
the steric hindrance could be displayed more directly in the
giant molecules. As a matter of fact, there are only limited
examples shown that discotic molecules with π−π interactions
could also form F−K spherical packings in dendrimers and
giant molecules.26,59−62

2. EXPERIMENTAL SECTION
2.1. Materials. The giant molecules mentioned in the above text

were prepared by the Sonogashira reaction or the CuAAC click
reaction. More details on the molecular design and synthesis are
provided in the SI Appendix, Section 1.2.

2.2. Sample Preparation. Samples with ordered structures were
obtained by thermal annealing at 190−230 °C, followed by rapid
quenching. Two sample preparation methods, namely drop-casting
and microtoming, were used to process TEM samples. For the drop-

Figure 1. Chemical structures and cartoon illustrations of four giant molecules: TEB-BPOSS3, TEB-BPOSS6, TAB-BPOSS3, and TAB-BPOSS6.
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casting method, the sample solution in THF with concentration of
0.5−1.0 mg/mL was dropped onto the carbon-coated copper grids
(400 mesh), followed by thermally annealing at corresponding
temperature overnight before TEM measurement. For the micro-
toming method, thin slices of annealed samples for TEM were
prepared by utilizing a Leica EM UC7 microtome.
2.3. Characterization. SAXS experiments were performed on a

Rigaku MicroMax002+ instrument equipped with a 2D multiwire area
detector and a microfocus sealed copper tube. Synchrotron SAXS
experiments were conducted at 12-ID-B, C station with X-ray energy
of 12 keV at the Advanced Photon Source (APS) of Argonne National
Laboratory. Bright field TEM images of the thin-slice samples were
collected on a JEOL-1230 TEM with an accelerating voltage of 120
kV and a CCD camera. Fourier filtering of the TEM image was
carried out with the reported FFTW implementation method.24,63

More details on the characterization are provided in the SI Appendix,
Section 1.

3. RESULTS AND DISCUSSION

The chemical structures of the four different designed giant
molecules are shown in Figure 1. Among them, TEB-BPOSS3
and TEB-BPOSS6 possess the same type of core but two
different periphery BPOSS numbers (three versus six), and so
is the same for TAB-BPOSS3 and TAB-BPOSS6. Their
detailed synthetic routes are in the Supporting Information
(Schemes S1−S9). Briefly, TEB-BPOSS3 and TEB-BPOSS6
are prepared by the Sonogashira coupling of iodo-function-
alized BPOSS and alkyne-functionalized 1,3,5-triethynylben-
zene cores, while TAB-BPOSS3 and TAB-BPOSS6 are
synthesized by the copper-catalyzed azide−alkyne cyclo-
addition (CuAAC) “click” reactions of azo-functionalized
BPOSS and alkyne-functionalized 1,3,5-triethynylbenzene
cores. The precise chemical structures and monodispersity of
these four molecules have been confirmed by 1H and 13C
NMR spectra (Figures S2−S9), matrix assisted laser
desorption/ionization-time-of-flight (MALDI-TOF) mass
spectra (Figure S14a), and gel permeation chromatography
(GPC) results (Figure S14b).
All four samples show excellent thermal stability up to 300

°C (Figure S16). Ordered packing can thus be obtained via
thermal annealing at 190 °C−230 °C followed by rapid
quenching. Prolonging annealing time (e.g., overnight) does

not change the formed structures. The small angle X-ray
scattering (SAXS) technique is used to monitor the formation
of ordered structures in the bulk samples. After thermal
treatment at 230 °C for 2 min and subsequent quenching,
TEB-BPOSS3 shows a set of well-resolved SAXS peaks (Figure
2b) with a characteristic scattering vector ratio of 1:√3:2.
These peaks can be assigned to a hexagonal columnar lattice,
and the projected 2D hexagonal lattice parameters are
determined as a = b = 3.83 nm and γ = 120°. The relatively
low intensity of the first diffraction peak (10) here is possibly
due to the electron density variation within the supramolecular
columns, which could also be supported by simplified atomic
simulation (Figure S18). Similar phenomena have been
attributed to factors such as the presence of a hollow center,
variation of the alkyl chain length, introduction of fluorinated
chains, and the polyhedral shape of the doubly segregated
aliphatic-aromatic supramolecular structure.32,64,65

To further verify this assignment, transmission electron
microscopy (TEM) experiments have been carried out for
microtomed samples without staining. The scale of the ordered
domains are typically several hundreds of nanometers. As
shown in Figure 2c, hexagonal columnar packing perpendicular
to the column axis can be clearly seen for TEB-BPOSS3. The
Fourier filtration process is used to enhance the image contrast
(see Supporting Information Section 1.1.2 for details). The
intercolumn d-spacing is measured as 3.6 ± 0.1 nm, which is in
agreement with that from the SAXS data (3.83 nm). In the
TEM image, the darker matrix is attributed to the BPOSS NPs,
and the light dots are the stacked TEB cores. Notably, the
measured diameter of the light dot is about 2.4 nm, consistent
with the diameter of a TEB core (Figure S19). The distance
between two light dots is about 1.2 nm, indicating that the
BPOSS NPs of adjacent columns may partially interdigitate
with each other. TEM images along the [10] direction can also
be observed (Figure 2d) with an intercolumn d-spacing of 3.1
± 0.1 nm, matching well with the (10) d-spacing determined
from X-ray data (3.32 nm).
Interestingly, TAB-BPOSS3 shows a different set of SAXS

diffraction peaks with a q-ratio of √3:√4:√7 (Figure 2f).
These peaks can be assigned as the (10), (11), and (12) planes
in a 2D rectangular lattice with lattice parameters of a = 3.9

Figure 2. Columnar phases of TEB-BPOSS3 and TAB-BPOSS3. (a) Molecular dimension of TEB-BPOSS3. (b) SAXS pattern of TEB-BPOSS3.
(c,d) Fourier filtered TEM images of TEB-BPOSS3 taken (c) along and (d) perpendicular to the column axis. Insets: Fourier filtrated TEM images
(left bottom) and FFT patterns (right bottom). (e) Molecular dimension of TAB-BPOSS3. (f) SAXS pattern of TAB-BPOSS3. (g,h) Fourier
filtered TEM images of TAB-BPOSS3 taken (g) along and (h) perpendicular to the column axis. Insets: Fourier filtrated TEM images (left bottom)
and FFT patterns (right bottom). The scale bars in the original and Fourier filtered images are the same.
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nm, b = 6.64 nm, and γ = 90° and two columns per lattice (for
a detailed structure, see Figure S20). This rectangular lattice
can also be confirmed by TEM images, as the measured angle
of the center column with two neighboring columns deviated
from a perfect 60° in a typical hexagonal lattice (Figure 2g).
Moreover, lattice parameters determined from this TEM image
are a = 3.9 ± 0.1 nm and b = 6.6 ± 0.1 nm, which are in
excellent agreement with those obtained from SAXS data. The
formation of a rectangular lattice may result from the tilting of
the discotic TAB cores within the column, which made the
cross section of the columns deviate from circular shape and
close to an elliptical shape along the column axis.
Changing the number of BPOSS NPs connected to the

triangle core from three to six alters the packing scheme and
leads to completely different supramolecular nanostructures.
TEB-BPOSS6 and TAB-BPOSS6 both show SAXS patterns
with three major peaks of q-ratios of √4:√5:√6 (Figures 3b
and 3e), which are characteristic of a 3D F−K A15 (Pm3̅n)
phase with spherical motifs.6,7 Those diffraction peaks can be
indexed as (200), (201), and (121) of the A15 (Pm3̅n) lattice.
All the other diffraction peaks can also be clearly indexed as in
Figures 3b and 3e. The unit cell parameters are determined as
a = b = c = 6.16 nm, α = β = γ = 90° for TEB-BPOSS6 and a =
b = c = 7.06 nm, α = β = γ = 90° for TAB-BPOSS6,
respectively. No sharp diffractions can be observed in their
WAXD patterns (Figure S21), indicating that BPOSS NPs are
not crystallized. Moreover, TEM images taken along the [001]
direction exhibit the characteristic 44 tiling patterns for both
samples without staining (Figures 3c and 3f−h), confirming
the A15 (Pm3̅n) structure.24 The light circles refer to the
aromatic cores, and the darker area refers to the BPOSS NPs.
Spheres of two sizes are observed in the TEM images,
suggesting that the A15 (Pm3̅n) structures may be the Cr3Si
type.66−68 The lattice parameters obtained from TEM images
are consistent with those determined from SAXS profiles.
We reason that the changes in the assembled structures from

the columns to the A15 (Pm3̅n) structure are due to the spatial
packing allowed at the periphery of the discotic cores. The
discotic cores prefer to stack into columns via π−π interactions

(Figure 4a). The existence of weak π−π interactions is
supported by the WAXD spectra (Figure S21). It should be

noted that, in our molecular design, we specifically introduce
the amide groups in the linkers, which could generate
hydrogen bonding between neighboring molecules and thus
further assist the stacking of the discotic cores. The presence of
hydrogen bonding can be detected by Fourier transform
infrared (FT-IR) spectroscopy (Figure S22). The necessity of
this hydrogen bonding in the formation of the structures is
illustrated by study on another set of similar molecules with
only ester linkages (Schemes S6−S9). The observation that
replacing the amide groups by ester linkages completely
prevents the formation of ordered structures (Figure S23)
highlights the significance of hydrogen bonding for constricting
the discotic cores in addition to the weak π−π interactions.
BPOSS NPs are shape and volume persistent. With only

three BPOSS NPs at the periphery of the discotic core (as for
TEB-BPOSS3 and TAB-BPOSS3), there is enough space for
BPOSS NPs to arrange themselves around the core stem by

Figure 3. A15 (Pm3̅n) phase formation of TEB-BPOSS6 and TAB-BPOSS6. (a) Molecular dimension of TEB-BPOSS6. (b) SAXS pattern and (c)
Fourier filtrated TEM images of TEB-BPOSS6. Insets: Fourier filtrated TEM images (left bottom) and FFT patterns (right bottom). (d) Molecular
dimension of TAB-BPOSS6. (e) SAXS pattern and (f) Fourier filtered TEM images of TAB-BPOSS6. Insets: Fourier filtrated TEM images (left
bottom) and FFT patterns (right bottom). (g) Illustration of the A15 (Pm3̅n) structure and (h) the 2D 44 tiling patterns along the [001] direction.
The spheres located at sparse layers (z = 1/4 and 3/4) are represented by large filled circles. The spheres at z = 0 (small open circles) and 1/2
(small filled circles) form the dense nets. The scale bars in the original and Fourier filtered images are the same.

Figure 4. Proposed molecular packing scheme: (a) columnar
structure and (b) A15 (Pm3̅n) structure. The packing is controlled
by the competition between the periphery steric hindrance caused by
BPOSS NPs (red spheres) and stacking of the cores (blue triangles).
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rotating the molecule along the column direction, so the
columnar motifs are retained.3 However, when the number of
BPOSS NPs increases to six per core (as for TEB-BPOSS6 and
TAB-BPOSS6), the NPs at the periphery region are too
crowded to maintain the columnar structure. The steric
hindrance generated by BPOSS NPs plays a counter role to
maintaining the columns. As a result, the columns may prefer
to periodically break down along the column axis for releasing
the steric hindrance (Figure 4b). In order to balance the extra-
volume requirement and the interactions among discotic cores,
a bowl-shaped deformation may occur as shown in Figure 4b,
leading to formation of spherical motifs, which could further
self-assemble into the F−K A15 (Pm3̅n) phase. A similar
mechanism has also been reported in the self-assembly of some
dendronized discotic molecules, a different class of molecules,
in which their deformation from planar conformation into a
bowl shape is induced by the changes in the packing mode of
the outer aliphatic region upon temperature increase, leading
to the transition from columnar to spherical phases.59−62,69,70

We would expect that discotic molecules modified with other
structural units with persistent shape and volume (e.g.,
fullerenes) could also assemble in this way. The measured
density values of these two A15 (Pm3̅n) phases are 1.10 g/cm3

for both TEB-BPOSS6 and TAB-BPOSS6. Therefore, in each
unit cell, it can be calculated that there are about 24 molecules
for TEB-BPOSS6 and 30 molecules for TAB-BPOSS6,
respectively. Since there are eight motifs in each lattice cell
of the A15 (Pm3̅n) structure, the average numbers of the
molecules in each spherical motif are three to four molecules
for TEB-BPOSS6 and TAB-BPOSS6 (see Supporting In-
formation Section 3 for details). This result indicates that in
these two samples, the column breaking takes place in every
three or four molecules along the imaginary columnar stacking.

4. CONCLUSION

In conclusion, a new strategy performed by symmetric giant
molecules has been successfully utilized to construct supra-
molecular nanostructures with different symmetries. Using a
nanoscale discotic core and rigid BPOSS NPs as the prototype
models, we show that the balance between the stacking of the
cores and the steric hindrance of BPOSS plays a critical role in
the formation of self-assembled nanostructures, such as
cylinders or spherical Frank−Kasper A15 phases. The rigidity
of the BPOSS NPs makes the steric hindrance controlled more
directly and simply here. The supramolecular motifs can be
tuned from cylindrical to spherical by simply increasing the
BPOSS number. This strategy is not limited to BPOSS NPs or
the triangle cores. Incorporation of other nanoparticles such as
fullerenes, polyoxometalates, and proteins with other joint
units can further diversify the packing schemes of such nano
building blocks, which might provide insights toward the
development of functional materials with specific nanostruc-
tures and unexpected properties.
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